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SUMMARY 

The transient development of cooling-induced flow in a triangular domain filled with water is studied by 
means of numerical simulation as a model for flow developing in the littoral region of lakes or coasts. The 
domain is fitted in polar co-ordinates; solutions are obtained for different values of the independent 
parameters of the model, which are the Rayleigh number (Ra),  the Prandtl number (Pr) and the slope of 
the domain (S). Within the ranges examined, as Ra is increased, different regimes of the developing flow 
are observed; these are found qualitatively to be insignificantly influenced by changes in S, whereas the 
flow is found to be quantitatively insensitive to Pr for high enough values of Pr. Several interesting features 
of the flow are depicted and integral values useful in the analysis of flow in lakes are extracted. 
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1. INTRODUCTION 

Cooling of surface waters which lie on a slope, such as those in the littoral region of lakes or 
in coasts, has been shown by Stefan et al.’ to result, under favourable conditions, in the 
development of horizontal gravitational flow. The sloping bed topography plays a key role in 
the development of the horizontal temperature gradient which drives the flow, since shallower 
water cools faster than deeper water. A noteworthy feature of this setting is that the horizontal 
temperature gradient develops as a result of the internal flow balance rather than being externally 
imposed. This feature is shared by the flow developing during the heating cycle of lakes.’ Given 
the time scale of forcing (cooling) in nature, the ‘littoral circulation’ problem (as the above- 
described flow will be referred to below) is an essentially unsteady flow problem. 

In order to  simulate the coolinginduced convective currents on an idealized slope, Horsch 
and Stefan3 formulated a model of unsteady natural convection in a triangular enclosure. The 
model has as independent parameters the Rayleigh number (Ra), the Prandtl number (Pr) and 

CCC 027 1-2091/94/14O105-30 
0 1994 by John Wiley & Sons, Ltd. 

Received I June I993 
Revised 28 December 1993 



106 G. M. HORSCH, H. G. STEFAN AND S. GAVALI 

the slope (S) of the littoral zone. Horsch and Stefan3 presented a numerical solution to the model 
in a domain fitted in Cartesian co-ordinates for a single value of the triplet Ra, Pr, S and 
documented a variety of intriguing features of the inception and development of the circulation 
at a relatively high Ra-value (Ra = 10’). The major features were in agreement with their 
laboratory visualization experiment. Among them is the emergence and disappearance of 
convective Benard-like cells during the evolution of the flow. 

Natural convective flows in enclosures have received extensive attention in the literature 
because of their importance in several  discipline^.^ Two archetypal settings are the Benard 
problem (see e.g. Reference 5 )  and the rectangle with differentially heated end walls (see e.g. 
Reference 6). The problem examined herein shares features with both these problems. Cooling 
of the top surface entails the potential for physical instability (as in the Benard problem); the 
development of a horizontal temperature gradient drives the horizontal circulation (as in the 
rectangle with differentially heated end walls). The complexity of the ‘littoral zone’ flow, caused 
by the particular boundary conditions pertinent to this physical problem, can be brought out 
by comparing it to flow forced by ‘attic space’ boundary conditions in a similar triangular 
geometry. The latter flow has been shown by Poulikakos and Bejan’ to evolve, in the range of 
parameters they examined, to a single-cell configuration through a regular spin-up; this evolution 
is devoid of convective cells. 

The focus in the present examination of the novel ‘littoral slope’ flow is on establishing the 
qualitative features of the transient development of the flow over a wide range of the governing 
parameters rather than on producing definitively accurate solutions. To this end, some implica- 
tions of a problem formulation similar to that of Horsch and Stefan’ are first analysed. Then 
numerical solutions of the time-dependent problem are obtained in a domain fitted in polar 
rather than Cartesian co-ordinates in order to rid the solutions of numerical errors that cannot 
be quantified. These solutions are obtained over a range of values of Ra, Pr and S, which makes 
it possible to identify a variety of different regimes and also to draw conclusions about the 
pertinence of the simulation to the actual littoral exchange problem. 

2. THE NUMERICAL MODEL 

2.1. Governing equations 

The numerical model is formulated in terms of the equations of continuity, momentum and 
energy, all expressed in polar co-ordinates, in which the boundary of the domain can be fitted 
naturally: 

momentum equations 

- + v - + - - +  
at ar r a e  
au au u a u  uu 

- v - + - - + gp(T,, - T)sin 8, 
(:2 :;) 
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continuity equation 

l a  1 au 
r ar r ae - - (ru) + - - = 0, 

energy equation 

107 

(3) 

where u = u(r, 0)  is the tangential velocity, u = Hr, 6)  is the radial velocity, p is the pressure, 
T, is the initial temperature, v is the kinematic viscosity, f i  is the thermal expansivity, g is the 
acceleration due to gravity and a is the thermal diffusivity. In these equations the Boussinesq 
approximation has been implemented and in the body force the density has been expressed as 
a linear function of the temperature. This formulation of the density has implications for the 
occurrence of a quasi-steady state as discussed below. 

The boundary conditions, shown in Figure 1, are 

shear-free surface with heat transfer 

a v  k aT 
ae r ae u = O ;  - = O ;  --=H a t 8 = 0 ,  O c r G R ,  

no-slip, adiabatic boundaries at bottom and end of domain 

where k is the conductivity, H is the imposed surface heat loss and R and 0, specify the size 
of the domain shown in Figure 1. The above conditions imply that there is no wind shear on 
the water surface and no heat transfer from or into the sediments. 

Figure 1. Computational domain and boundary conditions 
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To make the equations dimensionless, a choice of length, velocity and temperature scales is 
required. The selection of the pertinent scales in natural convection is a particularly intriguing 
problem. Detailed scale analysis6s8 can produce valuable information about the hierarchy of 
scales, although it is not always easy to substantiate the results and there are examples of 
incorrect analyses (e,g. those referred to in Reference 8, p. 119). Ultimately, however, if the scales 
are used solely to make the equations dimensionless for numerical solutions, the selection can 
be arbitrary at  no damage. 

A survey of non-dimensionalization scales used in natural convection problems has been given 
by O ~ t r a c h . ~  In the present problem the difficulty in choosing the scales is aggravated, since in 
addition to the velocity a choice of the temperature scale is also required. 

The scales used to normalize the equations for the numerical calculations are 

length scale 

h = R sin eT, 
velocity scale 

time scale 

temperature scale 

A T  = Hh/k ,  (1 1) 

where Gr is the Grashof number. The non-dimensional independent parameters of the problem 
are 

Grashof number 

Gr = gBHh4/vZk,  (12) 

Prandtl number 

Pr = v/a,  (13) 

slope of the enclosure 

S = tan eT. (14) 

The Rayleigh number Ra = Gr P r  can be used instead of Gr. These scales (equations (9) and 
(10)) have been used before, e.g. by Moore and Weiss' in a numerical study of the confined 
Benard problem. They did not prove particularly useful here, since use of a lh  and h z / a  as velocity 
and time scales respectively would have made explicit the insensitivity of the flow to Pr as 
discussed later. (The numerical results would of course have been identical.) The thermal 
diffusivity a = k / p c .  
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2.2. Quasi-steady convection problem 

Because the domain is cooled from the surface while the bottom and the side are insulated, 
the water temperatures will keep dropping and no steady state in terms of temperatures can be 
reached. Because the fluid properties (v, a, k) are represented as constants and the density is 
expressed as a linear function of temperature, a state can be reached, however, where the velocities 
and the temperature gradients (instead of the temperature) become steady. In this state, which 
is referred to as a quasi-steady state, the temperature drops at the same rate everywhere: 

dT'=-- 2H 
dt ~ c R B , '  

where c is the specific heat, or in dimensionless form with I#J = (To - VAT, 

Thus we have split the temperature into two components: a spatially averaged temperature 
which decreases linearly in time (the solution of equation (15)) and a component which, after 
the initial transient, settles into a steady state spatial distribution. 

Substituting T(r, 8, t) = - 2Ht/pcRO, + T ( r ,  8, t) into equation (4) gives 

Since all boundary conditions for T involve gradients only and are independent of time, the 
same boundary conditions apply for T as for T 

The model consisting of equations (1H3) and (17) and boundary conditions (947)  is equivalent 
to the original model and can be interpreted as the model of an enclosure with a uniformly 
distributed heat source equal to 2H/pcROT; the enclosure is being cooled from the surface. Since 
T can reach a steady state, no distinction is necessary between the quasi-steady state for 
temperature T and the steady state for T. Computationally, however, it is more efficient to solve 
the problem consisting of equations (1H3) and (17), especially for high Ra where the flow 
becomes time-dependent. In the following, T will be substituted for T while referring to equation 
( 17). 

2.3. The steady conduction problem 

Among the quantities to be extracted from the numerical solutions in terms of velocity 
components u(r,O) and v('t,O) and temperature T(r,O) are the strength of the circulation or 
volumetric flow rate Q and the total radial heat transfer H, which are defined as 

R(r) = s" ( p e n  - k $)r do. 
e=o 

These are made dimensionless as 
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The steady state of R can be found by integrating equation (17) over the angular direction 
(this will be subsequently referred to as ‘depth integration’). The result is 

At steady state 

Hs,(r) = H r ( i  - 1) 

or in dimensionless form 

XI&’) = r’(r’ sin 8, - 1). 

Equation (22) shows that the steady horizontal heat transfer is of course determined solely 
by the geometry of the domain and the temperature boundary conditions and not by the medium 
in which the transfer takes place. It is therefore instructive to examine the solution of the 
temperature field which develops in a solid domain (pure conduction problem) subjected to the 
same temperature boundary conditions. The solution is most readily obtained in Cartesian 
co-ordinates. 

For a pure conduction problem the energy equation that corresponds to equation (17) is 

k r ;  + $) + = 0, 

with boundary conditions 

where S = h/l and h and 1 are as indicated in Figure 2. 
The solution is 

T(x,  y )  = - S-’ - - - 
k 

The isotherms corresponding to this solution can be seen in Figure 3. 

! *  

h - 
Figure 2. Domain and boundary conditions for the conduction problem in Cartesian co-ordinates 
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S t d y - S t a t e  Conduction Ieotherme 
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01- 1.5 

@) 

Figure 3. Steady state isotherms for pure conduction (equation (26)) for (a) S = 0 1  and (b) S = 0.2 

Taking A K  = T(1,O) - T(O.0) as a measure of the horizontal temperature difference, we find 

1 Hh 
2 k  

AC = - - S - 2 .  

Since, as already mentioned, the steady horizontal heat transfer is imposed by the geometry 
and boundary conditions, the ratio of AK which develops in a fluid flow divided by the value 
for conduction (equation (27)) can be taken as an indication of the relative importance of 
convective versus conductive transfer. Equation (27) shows that the pertinent horizontal 
temperature scale for the conduction problem is 

H h  
k 

AT - - S - 2 .  

In Reference 9 the scale of equation (28) rather than the scale Hh/k  is shown to be the 
pertinent horizontal temperature scale for a more general class of slopes by examining asymptotic 
solutions as S + 0. 

2.4. Numerical method 

The equations for the flow problem were solved numerically using the SIMPLE algorithm of 
Patankar and Spalding." The details of the method described in Reference 11 have been 
implemented in the code of Reference 12. The main features of the method and some 
modifications of the original code are summarized below. 

The method arrives at a solution of the coupled, non-linear system of the equations of 
momentum, continuity and energy through successive iterations. During each iteration a 
linearized form of each component of the momentum equation (u, u )  is solved, followed by a 
pressure correction equation (p'), which has been derived from the continuity equation, and the 
energy equation (r). The matrix that results during the solution of each of these problems, 
(w, u, p', T), is solved by a line-by-line method utilizing the tridiagonal matrix algorithm. 



112 G. M. HORSCH. H. G. STEFAN AND S. GAVALI 

The discretization of the differential equations is based on a finite volume formulation which 
preserves the conservation properties of the equations exactly in the control volume that 
surrounds each grid point, for coarse and fine grids alike. The convection4iffusion terms are 
interpolated using the power-law scheme of Reference 13, which is a computationally efficient, 
close approximation of the exponential scheme. The properties of these schemes were useful in 
this study, where, at least for small Ra, the grid Peclet (Pe) number was found to range from 
small to large values in different parts of the computational domain. The remaining terms, e.g. 
the additional terms due to polar co-ordinates, were discretized separately. The grid is staggered, 
i.e. the two components of the velocity and the pressure are calculated at different locations to 
avoid the development of spurious pressure waves. The time marching is fully implicit even 
though, because of the possibility of the development of physical (convective) instability, the 
time step was small enough to satisfy a Courant criterion. 

Two modifications were implemented in the original code. The first aimed at making possible 
unsteady solutions by allowing iterations within a time step. The second aimed at improving 
the efficiency of the code on a vector processor. 

3. RESULTS OF THE NUMERICAL SOLUTIONS 

3.1. Range of independent variables 

To gain insight to the development and steady state of the flow model consisting of equations 
(1)-(4) and boundary conditions (5)-(7), also depicted in Figure 1, numerical solutions were 
calculated for different values of the independent parameters Ra, Pr and S .  Since the time required 
for the flow to develop is among the dependent variables of interest, the solutions were initiated 
from a quiescent and isothermal initial condition. The calculated parameters chosen to character- 
ize the dependence of the solutions on the independent parameters of the problem at steady 
state are u,,,,, QmaX and ATma, at 9 = eT. To make the interpretation of the solutions described 
below unambiguous, a summary of the variables of the problem together with the scales used 
to normalize them is given in Table I. Solutions were calculated for selected triplets of Ra = lo4, 

Table I. Summary of independent and dependent variables, reference quantities and their scales 

Non-dimensionalization Non-dimensional 
Name and symbol scale variables 

Independent Radial co-ordinate r h = R sin 8, (equation (8)) r‘ = r /h  
variables Angular co-ordinate r8 h as above 

Time t t ,  = h2Gr-1’Z/v  (equation (10)) t’ = tvGr”2/h2 

Dependent Radial velocity u us = vGr’l2/h (equation 9) u’ = uhCr-‘I2/v 
Angular velocity v v, as above d = vhGr-’/’/v variables 
Temperature T A T  = H h/k (equation (1 1)) t’ = T k / H h  

Point reference Maximum radial v, as above 
quantities velocity u,~.,  

Maximum temperature AT, as above 
difference AT,., 

Integral reference Maximum flow o,h = vGr’/’ (equation (20)) Q = Q/v,h 
quantity rate Q,,,,K (equation (18)) 
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lo6, lo8, Pr = 7 ,  lo2, lo3 and S = 0-2,O.l. Because the stability characteristics of the flow depend 
on Ra, a different regime results for each of the Ra-values. The main features of these results 
remain unaffected by Pr and, to a lesser degree, by changes in S within the examined ranges. It 
is therefore convenient to describe the flow for each value of Ra, followed by observations about 
the Pr influence. The influence of the slope is discussed in Section 3.6. 

3.2. Low-Rayleigh-number regime: Ra = lo4 

Flow development in time. The development of the flow from its inception at the onset of 
surface heat loss to the steady state is depicted in Figure 4 for Ra = lo4, Pr = lo3 and S = 0.2. 
All the quantities shown there have been normalized with the scales presented in Section 2 and 
summarized in Table I. 

The solution is based on 40 x 25 (r, 0) grid points. Since the length scale used to normalize 
the equations is h, i.e. the depth of the enclosure, given by equation (8). it follows that the 
dimensionless depth is 1.  The dimensionless radius is R' = l/sin eT, where Be i = 1 , .  . . ,23, are 
the co-ordinates of the control volume faces; At  = 0.25 for Pr = 7 , 0 3  for Pr = lo2 and 0-5 for 
Pr = lo3. 

At dimensionless time t = 50 the 7' = 0 isotherm is parallel to the surface along almost the 
entire enclosure (Figure 4); near the region where it meets the sloping boundary, however, it 
curves so as to meet this adiabatic boundary perpendicularly as required. Thus a local 
temperature gradient is created which initiates a counterclockwise-rotating cell at the shallow 
end. This cell in turn initiates through shear a clockwise-rotating cell which extends along the 
entire deep end of the enclosure. The first important feature of the low-Ra regime is that for 
S = 0.2 this deep-end cell remains stable, i.e. it does not break into smaller cells at a later 
time, so that during the rest of the development of the flow the shallow-end cell grows at the 
expense of the deep-end cell until the latter disappears. The second important feature of this 
regime is that a steady state is eventually reached (i.e. u, v, T and p become time-independent). 

Because the T = 0 isotherm is parallel to the surface (Figure 4), it can be inferred that at 
this time instant the flow does not contribute to the heat transfer, which is predominantly 
conductive. This is corroborated by the calculated horizontal heat flux also plotted in Figure 
4. The total heat transfer is separated into its conductive and advective components and the 
latter is zero. (Caution, however, must be exercised in interpreting this graph because of 
possible cancellation effects of this two-layer flow.) At a later stage, e.g. t = 800 in Figure 4, 
the isotherms and the heat transfer graph indicate the beginning of interaction of the flow 
with the heat transfer. The third set of graphs in Figure 4 is for time t = 2300 and depicts the 
stage where the deep-end cell has been suppressed. Finally, at time t = 5250 Figure 4 shows 
the quasi-steady state. At steady state the flow consists of one elongated cell which can be 
viewed as a two-layer flow in its middle part. The evolution into a quasi-steady flow field is 
also illustrated in the plot of horizontal (radial) velocities versus time at selected points (Figure 5). 

Dependence on Prandtl number Pr. A very interesting feature of the flow is its lack of 
dependence on the Prandtl number Pr when Pr > 7 (which corresponds e.g. to water at 20 "C). 
The numerical calculations show that the velocities which have been made dimensionless by the 
velocity scale given in equation (9) increase proportionally to Pr-'I2. It follows that if the 
velocities are made dimensionless by a/h, they will be independent of Pr. This holds true for the 
entire period of development as well as for the quasi-steady state. Actually, it can be seen that 
for the values reported in Table 11, the velocity maximum urm,, (scaled by a/h, i.e. u,,,hJa) for 
Ra  = lo4 and Pr = 7 is within 05% of the maxima for Pr = lo2 and Pr = 10'. Since the scaled 
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VeLocity Time Series 
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Figure 5. Radial velocity (u,) time series at selected points for Ra = lo*, Pr = lo3, S = 02 

velocity fields are identical for different Pr-values, the same applies for the flow rates Q (equation 
(8) and Table 111). 

The important implication of this property of the flow is that the non-linear advective terms 
of the momentum equations are negligible. Effectively, then, the non-linearities of this problem 
come from the advective terms of the energy equation and from the coupling through buoyancy 
of the momentum and energy equations. 

The Pr-independence of the appropriately scaled flow quantities is not a feature unique to 
the particular flow examined herein. In fact, as is well documented in the heat transfer literature, 
it seems to be common among natural convection flows in enclosures. For example, De Vahl 
Davis14 and Quon’’ found that the steady, two-dimensional solutions of the flow in a 
square enclosure with differentially heated vertical walls are largely independent of Pr for 
Ra-values up to about lo6. Mallinson and De Vahl DavisI6 confirmed that this property of the 
flow also holds for three-dimensional solutions. These studies concluded that at Pr = 7 the flow 
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Table 11. Radial velocity maxima (urm..) at steady state for 
different Ra- and Pr-values; xis the exponent in urm, = APr” 

Pr Ra = lo4 106 108 

7 9.01 x lo-’ 6.45 x 4.10 x lo-’ 
102 2.39 x lo-’ 1.78 x lo-’ 1.12 x 10-2 
103 7.55 x 10-3 

X - 0.50 - 0.49 - 0.49 

Table 111. Radial flow rate maxima (QmaX) at steady state for 
different Ra- and Pr-values 

Pr Ra = lo4 106 108 

7 1.96 x lo-’ 1.11 x 10-2 6.85 x 10-3 

103 1.64 10-3 
102 5.20 x 10-3 3.00 10-3 1-85 x 

behaves as for infinite Pr, while the difference at  Pr = 1 is surprisingly small (of the order of a 
few per cent). 

Moore and Weiss’ studied the Rayleigh-Benard problem by extracting two-dimensional 
numerical solutions. They found that for Pr-values greater than unity the Nusselt number Nu 
is independent of Pr  (termed the viscous regime). Also, the velocity scale they gave for this regime, 
i.e. w - Ra2/’a/h, is independent of Pr. The domain of validity of the viscous regime was found, 
however, to depend on the relative Ra- and Pr-values. Busse17 cites further evidence that for 
the Btnard problem Nu is independent of P r  when Pr  > 1; in this regime the stability properties 
of convection depend on the non-linearities of the heat equation. 

Accuracy of the solutions. To appraise the accuracy of the calculations, solutions obtained on 
two different (r ,  0) grids, one 30 x 15 and the other 40 x 25, for Ra = lo4, Pr = 7 and S = 0.2 
were compared. The grid was non-uniform in the &direction, being progressively thinner 
towards the surface. The overall evolution of the flow was qualitatively identical for the two 
different resolutions, with the boundary between the two cells (Figure 6) being at nearly the 
same position. As for any fixed grid calculation of a flow that exhibits transient formation and 
disappearance of cells, however, the calculation becomes less accurate when the extent of the 
disappearing cell becomes comparable with the spatial resolution. Thus before t = 35 the 
maximum radial velocity u , ~ ,  of the two solutions was within 5%, whereas between t = 35 and 
70 the difference was close to 20%, with the maximum difference (25%) occurring at  t = 475  
(see Figure 6). Shortly before the disappearance of the deep-end cell, however, and up to the 
steady state the difference in u,,.. between the two solutions is less than 0.2%. 

The dimensionless time step used to calculate the solutions was 025, 0.5,O.S for Pr  = 7, lo2, 
lo3 respectively. It can be verified a posteriori that with the grid and time step in use a Courant 
number criterion is conformed to (although stability is not an issue, since the method is fully 
implicit). An indirect verification that the time step was adequate comes from the higher-Pr 
solutions. The time step expressed in h f / a  time units (in which the solutions are virtually identical) 
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- . * .  * .  

Figure 6. Instantaneous velocity fields at t - 47.5 for Ra = loL, Pr = 7, S = 0.2 calculated on 15 x 30 (upper) and 
25 x 40 (lower) grids 

is 9-45 x lo-', 5 x for Pr = 7, lo2, lo3 respectively. Since decreasing the 
time step by a factor of six did not produce any differences, the original time step could be 
considered adequate. 

1-58 x 

3.3. Intermediate-Rayleigh-number regime: Ra = lo6 

Flow development in time. A sequence of streamline, isotherm and radial velocity plots 
depicting the evolution of the flow at Ra = lo6, Pr = 7 and S = 0.1 appears in Figure 7. The 
solution is based on 30 x 80 (0, r )  grid points. The domain dimensions are as for the Ra = lo4 
solution. For this run Ar' = 0.0654; Oi = [ ( i  - 1)/28]**15/OT, where Oi, i = 1 , .  . . ,28, are the 
co-ordinates of the control volume faces; At  = 0.25 for Pr = 7 and 0.5 for Pr = 10'. The 
description of the main features of the flow is generic and applies also for Pr = 10' and 
for S = 0.2. Further details can be found in Reference 18. 

The inception of the flow (Figure 7, t = 25) is quite similar to the inception at Ra = lo4 
described above. The first distinctive feature of this regime is shown in Figure 7 at t = 75, 
where it can be seen that the deep-end elongated cell breaks into smaller cells. Unlike the 
shallow-end cell, which is driven by the local, comer temperature gradient, the deep-end cells 
are the result of physical instability, i.e. they are the equivalent of BCnard cells. It can be 
recalled that at Ra = lo" no such cells appeared. The second distinctive feature of the 
Ra = lo6 regime is that just as for the Ra = lo4 case a steady state is eventually reached 
(Figure 7, t = 1250). This state consists of an elongated cell extending along the entire 
enclosure, with a secondary cell forming near the surface at the deep end. It is noteworthy 
that the single-cell regime is reached relatively early in the evolution of the flow (around 
t = 400, Figure 7), whereas the steady state is reached at a much later time (around t = 1OOO). 
This can be observed more clearly in Figure 8, where time series of the radial velocity at 
selected points are plotted. After the initial development of the flow the steady state is 
reached through oscillations and minor adjustments of the flow. For total flow rate and total 
radial heat transfer it can be seen from Figure 9 that these minor adjustments are important 
in reaching the steady, horizontal heat transfer. 



118 G. M. HORSCH. H. G. STEFAN AND S. GAVALI 

. r r u  

* 2.15.10' 

- 
A- 0. im 1 

,. .. .. ,. .. 
C '  - . 

b- l.u.Io- 

.. *. L. .. .a Y .. .. u .. - 0  
b tj 

hoc 2.9a.10' 

Figure 7. Characteristic stages during the evolution of the Ra = 10'. P r  = 7, S = 01 flow on a 30 x 80 grid. At each 
time instant plots of (from top to bottom) streamlines, isotherms and radial velocity profiles are included 

The foregoing observation of the flow development raises a serious question. If several 
intermittent cells form, interact with each other and finally merge into a single cell, is it possible 
that the flow will be three- rather than two-dimensional? This situation is to be contrasted with 
the Ra = lo4 calculation, where the smooth progression from two cells to a single cell makes 
it likely that the cells could be two-dimensional rolls. The more important question in the 
Ra = lo6 case is whether the single main cell at steady state results because of the restriction 
of the flow in two dimensions. Carrying out three-dimensional calculations to settle these 
questions was precluded by the impractical highly cost of their computation. 
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Figure 8. Radial velocity (u,) time series at selected points for Ra = lo6, Pr = 7, S = 0.1 
Dependence on Prandtl number Pr. The role of Pr in the solution at Ra = lo6 is less clear 

than it is at Ra = lo4, mainly because the unsteady part of the solution is less accurate. At 
steady state it can be seen that by rescaling the values given in Table I by a/h, the maximum 
of the velocity at Ra = lo6 is 17.1, 17.8 for Pr = 7, 10’ respectively. Unlike the Ra = lo4 
solution, however, the early stages of the evolution are different for each Pr-value, with more 
vigorous cell velocities appearing at Pr = 10’. Since it is rather unlikely that an increase in Pr 
should have such an effect, it is more reasonable to attribute these differences to the different 
time step sizes of the solutions, which were 9.45 x lop5 and 5 x lo-’ for Pr = 7 and lo2 
respectively. Nevertheless, the development stages parallel each other reasonably closely and 
it is clear that although the accuracy of the solutions would be improved with finer spatial 
resolution and a finer time-step, the overall features of development would not change, as 
explained next. 

Accuracy of the solutions. The accuracy of the original 25 x 40, Ra = lo6, Pr = 7, S = 0 1  
solution was examined by making an additional run on a 30 x 80 grid. At steady state the 
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Figure 10. Bottom temperature profiles for Ra = lo6, Pr = 7, S = 0.1 on 30 x 80 (upper curve) and 25 x 40 (lower 
curve) grids 

difference was 0.95% in terms of u,~. ,  and 7% in terms of +,,, (both maxima occur in the deep 
part of the domain); II/ is the streamfunction value. The finer grid solution revealed, however, 
the inadequacy of the discretization of the coarser grid at the pointed end of the domain, 
since ATb = 8.48 for the 30 x 80 solution while AT = 6.93 for the 25 x 40 grid (18% difference). 
The discrepancy can be seen in Figure 10, which compares the bottom temperature profiles for 
the two different grids and illustrates the sharp temperature drop near the corner. The two 
profiles virtually coincide nevertheless beyond r = 2. In addition, the flow quantities are within 
1% at steady state, indicating that the region near the corner where conduction is dominant 
does not influence the flow very much. During the initial period of flow development the 
calculations show that the grid significantly influences both the location and strength of the 
convection cells. This is seen in Figure 11, where the calculated fields (u, u, t )  at t = 100 are 
shown for the two different grids ((a) 30 x 80, (b) 25 x 40). The characteristic stages, however, 
such as the formation of cells and the merging of cells to form one main cell (Figure 7), are 
closely paralleled in the two grids. For t < 500  the difference in ulm, is up to 25% and that in +,,, up to 30%. After t > 500 the differences drop to 1.5% for JI,,,,, and 1% for u , ~ , ~ .  The 
sensitivity of the flow pattern to the grid size is a strong indication of how delicate the flow is. 
It thus seems pointless to seek a fine grid solution for the initial period, especially since the main 
interest here is in an estimate of the time scale to steady state and in characteristic velocities. 
Consequently, it was decided to check the accuracy of the Ra = lo6, Pr = 7, S = 0.2 (higher- 
slope) solution for the steady state only. To this end, the steady state of the 25 x 40 grid was 
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Figure 1 1 .  Instantaneous streamlines, isotherms and radial velocity profiles for Ra = lo6, Pr = 7, S = 0.1 on (a) 30 x 80 
and (b) 25 x 40 grids 

interpolated on a 30 x 80 grid in order to get a close initial guess. This procedure was first 
tested for the S = 0.1 slope where the fully unsteady solutions were available on both grids. 

By applying this sort of refinement, the solutions at Ra = lo6, Pr = 7, S = 0.2 on 25 x 40 
and 30 x 80 grids were found to differ by 0.5% in u,-, and less than 0.1% in JI,,,. 

The effect of the time step on the accuracy of the solution has been discussed in the 
subsection on Prandtl number effects. 

3.4. High-Rayleigh-number regime: Ra = 10' 

Flow development in time. The initial development of the flow at Ra = lo8, Pr = 7, S = 0-2 
from isothermal and quiescent initial conditions is similar to the already described initiation 
of flow at Ra = lo6. The Ra = 10' solution is based on 30 x 80 (0, r) grid points. The domain 
dimensions are as for the Ra = lo4 solution. For this run Ar' = 0.0654; Oi = [(i - 1)/28]**1.5/OT, 
where Oi, i = 1 , .  . . ,28, are the co-ordinates of the control volume faces; At  = 0.25 for Pr = 7. 
The important difference between these two flows is that the one-main-cell configuration which 
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Figure 12. Time instants in the evolution of the Ra = lo8, Pr = 7, S = 0.2 flow. Included at each instant are (from top 
to bottom) streamlines, isotherms, radial velocity profiles, horizontal flow rate and horizontal heat transfer 
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Figure 13. Streamlines, isotherms and radial velocity profiles (from top to bottom) resulting from averaging within the 
developed time-dependent state of Ra = 10”. Pr = 7, S = 0.2 on a 60 x 120 grid 

represents a steady state at Ra = lo6 is no longer stable at Ra = lo8. This is expected for flows 
of sufficiently high Ra-values, such as those developing in natural systems or even those observed 
in the laboratory (see Reference 9 for experiments at Ra - 10”). The range around Ra = lo8 
is also where the thermal boundary layer that forms at the surface of a fluid layer cooled from 
above becomes intermittent (i.e. time-dependent).” The recurrent formation and disappearance 
of ephemeral secondary cells that disrupt the horizontal flow to varying degrees is depicted in 
Figure 12. In this figure the temperature in the bulk of the domain is remarkably uniform 
compared with the sharp temperature drop at the shallow corner. This feature has been also 
observed experimentally (see Reference 9, pp. 71 and 88). 

The time-averaged streamlines and isotherms are shown in Figure 13. These quantities have 
been averaged over a time interval that excludes the initial development. The criterion for the 
adequacy of the averaging interval was based on the closeness of the time-averaged, ‘depth’- 
integrated (i.e. integrated over the angular direction) heat transfer rate to the steady state values 
of this quantity (equation (23)). This criterion is arbitrary insofar as the degree of closeness of 
the two curves is arbitrary; it was found that different degrees of proximity resulted in differences 
of a few per cent in mean values of Q,,, and urma,. For the time interval t = 741 to 2613 chosen 
for the mean plots of Figure 13, the time-averaged, depth-integrated flow rate and heat transfer 
appear in Figure 14, where it can be seen that the time-averaged heat transfer rate visually 
coincides with its steady state space distribution. The standard deviations of the computed Q 
and R time series normalized by the local mean values are presented in Figure 15. The shape 
of these curves, which initially increase linearly and then abruptly become almost constant, 
indicates a depth scale beyond which the flow is less dependent upon the local depth. 
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Figure 14. Time-averaged flow rate and horizontal heat transfer corresponding to the fields depicted in Figure 13 

Spatial resolution criteria-uccuracy. For the numerical solution to be qualitatively correct, 
the intrinsic length scales of the problem have to be adequately discretized. The horizontal 
grid size is constrained by the length scale of the developing surface instability and the scale 
of the convective cells (thermals) that develop past marginal stability, while the vertical 
resolution is constrained by the thickness of the surface thermal boundary layer. Estimates for 
each of these were used to make the grid of an Ra = lo8, S = 0.2 and 01,  Pr = 7 (which 
represents water at 20 "C) run. 

The aforementioned scales were estimated using the numerical and experimental studies of 
Foster,20-22 Katsaros et af. 23 and Tamai and A~aeda . '~  The details can be found in Reference 3. 

Since it is well known (and has already been observed for the Ra = lo6 solution) that in 
the time-dependent regime the solutions are very sensitive to grid details (see e.g. Reference 25), 
it is pointless to assess the accuracy of the solutions in terms of instantaneous fields; rather, the 
dependence of the solution on mesh size is made in terms of time-averaged quantities and the 
characteristics of fluctuations. It has been noted in the literature that 'statistical results [of coarse 
grid simulations] are sometimes surprisingly close to those of well resolved turbulent flows'.26 
Numerical solutions of the flow field at Ra = lo8, Pr = 7 ,  S = 0 2  were obtained for two different 
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Figure IS. Standard deviations corresponding to the mean fields shown in Figure 14 

(0,r) grid resolutions, namely 30 x 80 and 60 x 120. On the coarser mesh the solutions were 
started from isothermal and quiescent conditions. After the time interval t = 741 to 2600 was 
found to be adequate for averaging according to the criterion discussed above, the instantaneous 
fields at t = 741 were interpolated on the thinner mesh and a run of equal length was performed. 
It was found that the fine grid solution satisfied the averaging criterion equally well. In terms 
of maxima, the two solutions differed by 8.3% in q,,, and 6.1% in u,~.,;  the functional form of 
the 9- and u-fields is very similar for the two different grids. In terms of the standard deviations 
of the Q- and A-values (equation (26)) as reported in Figure 15, the maximum difference between 
the two calculations was 7%. 

3.5. Interpretation of the dependence on Rayleigh number 

Having described in the preceding subsections the three flow regimes that correspond 
to three different Ra-values, it is useful to summarize the results by examining the effects that 
an increase in Ra has on the flow. The dependence of u,,,, v,,,, and Q,,, on Ra is shown in 
Figures 16(a) and 16(b). From the description of the flow given in Sections 3.2-3.4, it follows 
that since the flow configuration (flow pattern) is different for each Ra-value, it is not expected 
that a single scaling law will fit the velocity and flow rate dependences on Ra, so that 
Figures 16(a) and 1qb)  should be regarded as a mere summary of the results of the numerical 
experiments. 

For a given fluid, e.g. water, an increase in Ra can be interpreted as being due to either an 
increase in surface heat loss rate H or an increase in maximum depth h (equation (12)). Because 
of the importance which this distinction has in applications, it is of interest to examine each 
case separately. 
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Figure lqa).  Dependence of dimensionless u,,,, Qm,x and urncan on Ra for Pr = 7, S = 0.2. The velocities have been 
normalized using o/h and the flow rate using a. The values corresponding to Ra = 2 x 10'' have been measured 

experimentally 

Eflects of increase in depth h. The effect that an increase in depth h has on the flow is of 
particular interest in examining the relevance of solutions of the numerical model to the analysis 
of cooling-induced currents in a littoral-like lake domain, where the deep-end boundary is 
open rather than closed. This is because a domain corresponding to a smaller depth h (i.e. 
smaller Ra-value) can be considered as being imbedded in a domain of larger h (i.e. larger 
Ra-value). The flow of the overlapping part in the larger domain is then regarded as the 
open-ended equivalent of the flow of the small, closed-end domain. The relative size of domains 
corresponding to Ra = lo4, lo6, 10" is l / lO : l / , / lO : l .  The effects of the deep-end boundary 
are assessed by comparing the horizontal (radial) circulation flow rate curves in the two 
domains. 
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A dimensionless length r ,  of a domain associated with a Rayleigh number value Ra,  can be 
rescaled to using the length scale of a domain with value Ra, by 

Similarly, to rescale a dimensionless flow rate Q, from Ra,  to Qz of Ra,,  the formula to be used is 

The comparison between the Ra = lo4 and lo6 Q-curves appears in Figure 17(a) and for 
Ra = lo6, 10' in Figure 17(b). 
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Figure 17. Comparison between Q-curves for (a) Ra = lo4, lo6 and (b) Ra = lo6, 10' (time-averaged). In both cases 
the scales used correspond to the higher Ra 

The most important outcome of the numerical solutions to be used in applications is 
the flow rate that develops at the deep end of the domain and establishes an exchange flow 
between the littoral and open waters. To extract the exchange flow rate from calculations or 
experiments in a closed-end domain, the linear portion of the Q-curves can be extrapolated up 
to the closed end. Figure 17 shows that such an extrapolation will tend to underestimate the 
exchange flow that would develop in an open-ended domain. Thus use of solutions to the model 
formulated in Section 2.1 in the analysis of cooling-induced exchange flow will produce low 
estimates. 

Increase in surface heat loss rate H .  Alternatively, an increase in Ra can be due to an increase 
in surface heat loss rate H while the fluid is specified and the maximum depth h is kept constant. 
In this case the flow rates have to be rescaled according to equation (lo), while the lengths 
remain unchanged. To observe the qualitative influence of an increase in H on the flow quantities, 
the flow fields for Ra = lo4, lo6, 10' have been juxtaposed in Figure 18. 

3.6. Dependence on slope 

The effects that changes in slope have on the flow were investigated by comparing solutions 
at Ra = lo6 and lo* with Pr = 7 for slopes S = 0 1  and 0.2. In general it was found that within 
this range of the parameters, changes in slope did not alter the distinctive characteristics in the 
evolution and the steady state of the flow. For example, the secondary cell in the deep end of 
the domain at Ra = lo6 was present at the steady state of both the S = 0.1 and 0 2  solutions, 
and the same holds for the time-averaged fields at Ra = lo*. 
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Among the most interesting features of the model described in Sections 2.1 and 2.2 is the 
behaviour of the flow as the slope S decreases. It can be recalled from Section 2.3 that the steady, 
depth-integrated heat transfer is given by 

so that the average heat transfer is 

From equation (32) it follows that as S + 0, the average horizontal heat transfer increases as 
S -  ’. In Section 2.4 on pure conduction it was shown that as a result, as S 0, the horizontal 
temperature scale increases as S-’ (equation (27)). Scaling arguments indicate that there exists 
a flow region at the pointed end of the domain where heat transfer is dominated by conduction. 
The length of this region decreases as S“’ in the limit S + 0. Thus it can be expected that the 
strength of advection increases as the slope decreases, and the advective terms in the energy 
equation become dominant, since as the slope decreases, the radial amount of heat flow imposed 
by the boundary conditions is forced through a ‘shallower’ depth. 

The dependence of u,,, and QmaX on S can be seen from the values included in Table IV. All 
values correspond to the Pr = 7 calculation except those marked by an asterisk, for which 
Pr = 1. 

3.7. Time to steady state 

of Ra and S. 
The dimensionless time required to reach steady state is summarized in Table V as a function 

Table IV. Maximum normalized velocity and flow rate 
dependence on Rayleigh number and slope 

VmaxAWa) Q m a J a  

Ra s = 0.1 s = 0.2 s = 0.1 s = 0.2 

104 26.5* s f . 8  5*89* 5.19 
106 195 171 37.6 29.4 
108 1110 1020 234 166 

Table V. Time to steady state, normalized 
by the h2/a scale 

Ra s = 01 s = 0.2 

104 50 2.0 
106 0.5 0.2 
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Figure 19. Averages for the Ra = lo8, P r  = 7, S = 0.1 solution. Improvement of the quality of the time-averaged curves 
as averaging is moved from (a) within to (b) outside the initial development period. (c) Time-averaged radial flow rate 

and heat transfer curves over a long interval and (d) the corresponding standard deviations 
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From Figures 4, 5,  7 and 8 it can be seen that the time to steady state consists of the time 
required to reach the single-cell configuration plus a diffusive adjustment necessary to reach the 
steady state heat transfer. At Ra = lo6 this diffusive adjustment is simultaneous with oscillations 
in the flow field caused by the adjustment of the secondary cell at the deep end. 

At Ra = lo8, where the solutions reach a steady state in a time-averaged sense only, the 
important time scales are the length of an adequate time-averaging interval and the initial 
development interval, which should be excluded from the steady state averaging. 

A suitable criterion for the adequacy of the length of time-averaging interval can be based on 
equation (22); the time-averaged flow rate curves are shown in Figure 14 for Ra = lo8, Pr = 7, 
S = 0 2  and in Figure 19 for Ra = lo8, Pr = 7, S = 0.1. 

As the time-averaging interval is reduced, the averages deteriorate. To determine the time 
required for the initial development, averages were taken over intervals of fixed length but 
positioned at different instants within the calculated record. Using an interval of length Ar = 125, 
it was found that the qualities of the time-averaged radial flow rate and heat transfer curves 
change abruptly at  r - 400, as is seen in Figure 19. 

4. CONCLUSIONS 

The thermal gravitational circulation in a two-dimensional wedge-like enclosure, insulated from 
the bottom and cooled from the surface, has been studied through numerical simulations. Interest 
in this formulation is stimulated by the desire to study convective currents which arise in the 
littoral region of lakes, where they provide a transport mechanism without affecting the 
stratification of the main lake. As a result of the imposed boundary conditions the horizontal 
temperature gradient develops internally, rather than being imposed as is the case with more 
traditional natural convection settings. It is found that as the Rayleigh number is increased, 
intermittent cells, which for low and intermediate Ra-values are present only during the initial 
evolution of the flow, survive at the (statistical) steady state, thus rendering the flow time- 
dependent. The flow is shown to be insensitive to Prandtl number changes (at high enough 
Pr-values), which implies that the advection terms in the momentum equations are of little 
importance. 
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